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SUPPLEMENTARY INFORMATION

We consider the problem of synchronization in large-scale nonlinear network systems, where the scalar dynamics of
the individual subsystem is assumed,

xkt+1 = axkt − φ(xkt ) + vkt k = 1, . . . , N, (1)

where xk ∈ R are the states of the kth subsystem, a > 0, and vk ∈ R is an independent identically distributed
(i.i.d.) additive noise process with zero mean (i.e., E[vkt ] = 0) and variance E[(vkt )2] = ω2. Subscript t denotes the
index of the discrete time-step throughout the paper. The function, φ : R → R, is a monotonic, globally Lipschitz
function with φ(0) = 0 and Lipschitz constant, 2

δ . We assume the individual subsystems are linearly coupled over an
undirected network given by a graph G = (V, E) with node set V , edge set E , and edge weights µij ∈ R+ for i, j ∈ V
and eij ∈ E . Let EU ⊆ E be a set of uncertain edges and ED = E \ EU . The weights for eij ∈ EU are random variables:

ζijt = µij + ξijt , where µij models the nominal edge weight and ξijt models the zero-mean uncertainty (E[ξijt ] = 0),

for all t, with variance E[(ξijt )2] = E
[
(ζij − µij)2

]
= σ2

ij , for all t. If the coupling gain is g > 0, the individual agent
dynamics of the coupled subsystem is given by,

xkt+1 = axkt − φ
(
xkt
)

+ g
∑

ekj∈ED

µkj(x
j
t − xkt ) + g

∑
ekj∈EEU

(µkj + ξkjt )(xjt − xkt ) + vkt , (2)

= axkt − φ
(
xkt
)

+ g
∑
ekj∈E

µkj(x
j
t − xkt ) + g

∑
ekj∈EU

ξkjt (xjt − xkt ) + vkt , (3)

= axkt − φ
(
xkt
)
− g

 ∑
ekj∈E

µkj

xkt + g
∑
ekj∈E

µkjx
j
t − g

 ∑
ekj∈EU

ξkjt

xkt + g
∑

ekj∈EU

ξkjt x
j
t + vkt . (4)

We denote the nominal graph Laplacian by L := [l(ij)] ∈ RN×N and uncertain graph Laplacian by LR := [lR(ij)] ∈
RN×N , where

l(ij) =

{
−µij , if i 6= j, and, eij ∈ E∑
eij∈E µij , if i = j

, and, lR(ij) =

{
−ξijt , if i 6= j, and, eij ∈ EU∑
eij∈EU ξ

ij
t , if i = j

. (5)

The nominal graph Laplacian L is a sum of the graph Laplacian for the purely deterministic graph (V, ED), and of
the mean Laplacian for the purely uncertain graph (V, EU ). Hence, L may be written as L = LD + LU , where LD, is
the Laplacian for the graph over V with edge set ED. LU is the mean Laplacian for the graph over V with edge set
EU . We combine the individual systems to create the network system (x̃t) written as,

x̃t+1 = (aIN − g(L+ LR)) x̃t − φ̃ (x̃t) + ṽt, (6)

where IN is the N ×N identity matrix, x̃t = [x1
t · · · xNt ]>, and φ̃(x̃t) = [φ1

t (x
1
t ) · · · φNt (xNt )]>.

Given the stochastic nature of the network system, we propose the following definition for mean square exponential
synchronization [1].

Definition 1 (Mean Square Synchronization) The network system (6) is said to be mean square synchronizing
(MSS), if there exist positive constants, β < 1, K̄(ẽ0) <∞, and L <∞, such that,

Eξt0,ṽt0 ‖ x
k
t − x

j
t ‖2≤ K̄(ẽ0)βt ‖ xk0 − x

j
0 ‖2 +Lω2, (7)

∀k, j ∈ [1, N ], where ẽ0 is a function of difference ‖ xi0 − x`0 ‖2 for i, ` ∈ [1, N ] and K̄(0) = K for some constant K.

Remark 2 In the absence of additive noise, ṽt, in system Eq. (6), the term Lω2 in Eq. (7) vanishes and Definition



2

1 then reduces to mean square exponential (MSE) synchronization [2].

Mean Square Synchronization Result

Since the subsystems are identical, the synchronization manifold is spanned by the vector, 1 = [1, . . . , 1]>. The
dynamics on the synchronization manifold are decoupled from the dynamics off the manifold and are essentially
described by the dynamics of the individual system, which could be stable, oscillatory, or complex in nature. We
now apply a change of coordinates to decompose the system dynamics on and off the synchronization manifold. Let

L = V ΛV >, where V is an orthonormal set of vectors given by V =
[

1√
N

U
]
, and U is a set of orthonormal vectors

also orthonormal to 1. Furthermore, Λ = diag{λ1, · · · , λN}, where 0 = λ1 < λ2 ≤ · · · ≤ λN are the eigenvalues of L.
Let z̃t = V >x̃t and w̃t = V >ṽt. Multiplying (6) from the left side by V >, we obtain

z̃t+1 =
(
aIN − g

(
V >(L+ LR)V

))
z̃t − ψ̃ (z̃t) + w̃t, (8)

where ψ̃(z̃t) = V >φ̃ (x̃t). We can now write z̃t =
[
x̄>t ẑ>t

]>
, ψ̃(z̃t) :=

[
φ̄>t ψ̂>t

]>
, and w̃t :=

[
v̄>t ŵ>t

]>
, where

x̄t :=
1>√
N
x̃t =

1√
N

N∑
k=1

xkt , ẑt := U>x̃t (9)

φ̄t :=
1>√
N
φ̃ (z̃t) =

1√
N

N∑
k=1

φ(xkt ), ψ̂t := U>φ̃ (x̃t) . (10)

Furthermore, we have

Eṽ[v̄
2
t ] =

√
Nω2, Eṽ[ŵtŵ

>
t ] = U>Eṽ[ṽtṽ

>
t ]U = ω2IN−1. (11)

From (8), we obtain

x̄t+1 = ax̄t − φ̄ (x̄t) + v̄t

ẑt+1 =
(
aIN−1 − g

(
Λ̂ + U>LRU

))
ẑt − ψ̂t + ŵt, (12)

where Λ̂ = diag{λ2, · · · , λN}. For the synchronization of system (6), we only need to demonstrate the mean square
stability to the origin of the ẑ dynamics, as given in (12). This feature is exploited to derive the sufficiency condition
for mean square synchronization of the coupled system, as shown in the following lemma.

Lemma 3 The system described by Eq. (6) is MSS, as given by Definition 1, if there exists L > 0, K > 0, and
0 < β < 1, such that

Eξt0,ṽt0
[
‖ ẑt ‖2

]
≤ Kβt ‖ ẑ0 ‖2 +Lω2. (13)

Proof. To prove this result, we show the second moment of ẑt dynamics is equivalent to the mean square error
dynamics for each pair of systems. Then, we apply the stability results to the error dynamics to complete the proof.
Consider Eq. (12). We have

‖ ẑt ‖2 = ẑ>t ẑt = x̃>t
(
UU> ⊗ In

)
x̃t. (14)

Then, we have UU> = V V > − 1√
N

1>√
N

= IN − 1
N 11>. Substituting in (14), we obtain

‖ ẑt ‖2=
1

2N

N∑
i=1

N∑
j 6=i,j=1

(
xit − x

j
t

)> (
xit − x

j
t

)
. (15)

Now, suppose there exist L > 0, K > 0, and 0 < β < 1, such that

Eξt0,ṽt0
[
‖ ẑt ‖2

]
≤ Kβt ‖ ẑ0 ‖2 +Lω2. (16)
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This can be rewritten as

Eξt0,ṽt0

 N∑
k=1

N∑
j 6=k,j=1

‖ xkt − x
j
t ‖2

 ≤ Kβt N∑
k=1

N∑
j 6=k,j=1

‖ xk0 − x
j
0 ‖2 +Lω2. (17)

This implies

N∑
k=1

N∑
j 6=k,j=1

Eξt0

[
‖ xkt − x

j
t ‖2

]
≤ Kβt

N∑
k=1

N∑
j 6=k,j=1

‖ xk0 − x
j
0 ‖2 +Lω2. (18)

Thus, from (18) we obtain for all systems, Sk and Sl,

Eξt0 ‖ x
k
t − xlt ‖2≤ K̄(ẽ0)βt ‖ xk0 − xl0 ‖2 +Lω2, (19)

where K̄(ẽ0) := K

(
1 +

∑N
i=1,i 6=k

∑N
j=1,j 6=i‖x

i
0−x

j
0‖

2

‖xk0−xl0‖2

)
. Hence, the proof.

We will now provide a slightly modified Eq. (12). We know LR =
∑
eij∈EU ξ

ij
t `ij`

>
ij , where `ij ∈ R has values 1

and −1 in ith and jth entries, respectively, the remaining values are zeros. Thus, `>ij`ij = 2 for all eij ∈ E . Hence, if
ˆ̀
ij = U>`ij , we calculate

U>LRUd =
∑

eij∈EU

ξijt U
>`ij`

>
ijU =

∑
eij∈EU

ξijt
ˆ̀
ij

ˆ̀>
ij , (20)

where ˆ̀>
ij

ˆ̀
ij = 2. Thus, we can write Eq. (12) as

ẑt+1 =

aIN−1 − gΛ̂−
∑

eij∈EU

ξijt
ˆ̀
ij

ˆ̀>
ij

 ẑt − ψ̂(ẑt) + ŵt. (21)

In Lemma 3, we prove mean square exponential stability of (21) guarantees the mean square synchronization of the
coupled network of Lure systems, as given by (6). We will now utilize this to provide the sufficiency condition for
mean square stabilization of Lure systems interacting over a network.

Theorem 4 The network system in Eq. (6) is mean square synchronizing, if there exists a positive constant, p, that
satisfies δ > p, (

p− 1

δ

)(
1

p
− 1

δ

)
> α2

0, (22)

where α2
0 = (a0 − λsupg)2 + 2γ̄τλsupg

2, a0 = a− 1
δ , and λsup = argmax

λ∈{λ2,λN}

∣∣∣∣λ+ γ̄τ − a0
g

∣∣∣∣. Furthermore, τ :=
λNU

λNU+λ2D
,

where λNU is the maximum eigenvalue of LU , and λ2D is the second smallest eigenvalue of LD.

Proof. We first construct an appropriate Lyapunov function, V (ẑt) = ẑ>t P ẑt, that guarantees mean square stability.
From (21), defining ∆V := Eξt,vt [V (ẑt+1)− V (ẑt)], we obtain,

∆V = Eξt,ṽt

[
ẑ>t
(
A(ξt)

>PA(ξt)− P
)
ẑt − ẑ>t A(ξt)

>Pψ̂t − ψ̂>t PA(ξt)ẑt + ψ̂>t Pψ̂t

]
+ Evt [ŵ

>
t Pŵt]. (23)

Now suppose for some RP > 0, P satisfies

P =Eξt
[
A(ξt)

>PA(ξt)
]

+RP + Eξt
[(
A(ξt)

>P − IN−1

)
(δIN−1 − P )−1 (PA(ξt)− IN−1)

]
. (24)

Using (24) and algebraic manipulations as given in [3], we can rewrite ∆V as

∆V = −ẑ>t RP ẑt − Eξt
[
η>t ηt

]
− 2ψ̂>t

(
ẑt −

δ

2
ψ̂t

)
+ trace(PEvt [ŵtŵ

>
t ]), (25)
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where ηt(ξt(t)) be given by ηt(ξt(t)) = W−
1
2 (PA(ξt)− IN−1) ẑt − W

1
2 ψ̂t and W := (δIN−1 − P ). Since φ(·) is

monotonic and globally Lipschitz with constant 2
δ , we know

(
φ
(
xkt
)
− φ

(
xlt
))> ( 2

δ

(
xkt − xlt

)
−
(
φ
(
xkt
)
− φ

(
xlt
)))

> 0.
This gives

ψ̂>t

(
ẑt −

δ

2
ψ̂t

)
= φ̃ (x̃t)

>
UU>

(
2

δ
x̃t − φ̃ (x̃t)

)
= φ̃ (x̃t)

>
(
I − 1

N
11>

)(
2

δ
x̃t − φ̃ (x̃t)

)
(26)

=
1

2N

N∑
k=1

N∑
l=1,l 6=k

(
φ
(
xkt
)
− φ

(
xlt
))>(2

δ

(
xkt − xlt

)
−
(
φ
(
xkt
)
− φ

(
xlt
)))

> 0. (27)

Using (26) and writing ρ = trace(P ), we obtain,

Eξt,vt [V (ẑt+1))− V (ẑt)] < −ẑ>t RP ẑt + ρω2. (28)

Hence, (24) is sufficient for MSS of (1) from condition for Mean Square Stability of the Reduced System. Furthermore,
the equation in (24) can be rewritten using [4] (Proposition 12.1,1) as

P =Eξt
[
A0(ξt)

>PA0(ξt)
]

+RP +
1

δ
IN−1 + Eξt

[
A0(ξt)

>P (δIN−1 − P )−1PA0(ξt)
]
, (29)

where A0(ξt) = a0IN−1 − gΛ̂− gU>LRU and a0 = a− 1
δ . We observe this condition requires us to find a symmetric

Lyapunov function matrix, P , of order N(N−1)
2 . We now reduce the order of computation by using network properties.

For this, consider P = pIN−1, where p < δ is a positive scalar. This gives us δIN−1 > P . Using this and (21), we
rewrite the condition in (29) as follows

pIN−1 > p(a0IN−1 − gΛ̂)>(a0IN−1 − gΛ̂) +
p2

δ − p
(a0IN−1 − gΛ̂)>(a0IN−1 − gΛ̂) +

1

δ
IN−1

+ pg2
∑
eij∈EU

σ2
ij

ˆ̀
ij

ˆ̀>
ij

ˆ̀
ij

ˆ̀>
ij +

p2g2

δ − p
∑
eij∈EU

σ2
ij

ˆ̀
ij

ˆ̀>
ij

ˆ̀
ij

ˆ̀>
ij . (30)

We know ˆ̀>
ij

ˆ̀
ij = `>ijUdU

>
d `ij = `>ij`ij = 2 and∑

eij∈EU

σ2
ij

ˆ̀
ij

ˆ̀>
ij

ˆ̀
ij

ˆ̀>
ij ≤ 2γ̄

∑
eij∈EU

µij ˆ̀
ij

ˆ̀>
ij = 2γ̄U>LUU. (31)

Now, suppose LU ≤ τL = τ (LD + LU ). We then obtain τ ≥ λNU
λNU+λ2D

. We choose τ as

τ =
λNU

λNU + λ2D

. (32)

Hence, we have LU ≤ τ (LD + LU ) = τL. Then, bounding LU in (31) using (32), we obtain,∑
eij∈ED

σ2
ij

ˆ̀
ij

ˆ̀>
ij

ˆ̀
ij

ˆ̀>
ij ≤ 2γ̄τU>LU = 2γ̄τ Λ̂. (33)

Substituting (33) into (30), a sufficient condition for inequality (30) to hold is given by

pIN−1 >

(
p+

p2

δ − p

)
(a0IN−1 − gΛ̂)>(a0IN−1 − gΛ̂) +

(
p+

p2

δ − p

)
2γ̄τg2Λ̂ +

1

δ
IN−1. (34)

Equation (34) is a diagonal matrix equation that provides a sufficient condition for MSS as

p >

(
p+

p2

δ − p

)(
(a0 − gλj)2 + 2γ̄τg2λj

)
+

1

δ
, (35)
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for all eigenvalues λj of Λ̂. This is simplified as(
p− 1

δ

)(
1

p
− 1

δ

)
> α2

0, (36)

where δ > p > 0 and α2
0 = (a0 − gλ)2 + 2γ̄τλg2 for all λ ∈ {λ2, . . . , λN} are eigenvalues of the nominal graph

Laplacian. Now, for each of these conditions to hold true, we must satisfy condition (36) for the minimum value of

α2
o with respect to all possible λ. Now, λ∗ provides minimum values for α2

0 found by setting
dα2

0

dλ

∣∣∣
λ∗

= 0, giving us

λ∗ =
a0

g
− γ̄τ. (37)

Using λ∗, we conclude, if (36) is to be satisfied for all λ ∈ {λ2 . . . , λN}, it must satisfy (36) for the farthest such λ
from λ∗. Since eigenvalues of a graph Laplacian are positive and monotonic non-decreasing, all we need is to satisfy
(36) for λsup, where λsup = argmax

λ∈{λ2,λN}
|λ− λ∗|.

In the following discussion we will provide a system theoretic interpretation to the proposed definition of mean
square synchronization margin. For completion, we restate the definition for mean square synchronization margin.

Definition 5 (Mean Square Synchronization Margin) The margin for synchronization for network system (6)
is defined as

ρSM := 1− σ2g2(
1− 1

δ

)2 − â2
, (38)

where â = a− 1
δ −λsupg, â2 <

(
1− 1

δ

)2
, and λsup := argmax

λ∈{λ2,λN}

∣∣∣λ+ γ̄τ − a0
g

∣∣∣. Furthermore, τ :=
λNU

λNU+λ2D
, where λNU

is the maximum eigenvalue of LU and λ2D is the second smallest eigenvalue of LD.

System Theoretic Interpretation of Syncronization Condition and Margin

The first step towards the system theoretic interpretation to margin definition is to show the stability condition
derived in Theorem 4, i.e., Eq. (22), has the following equivalent,(

p− 1

δ

)(
1

p
− 1

δ

)
> α2

0 ⇐⇒
(

1− 1

δ

)2

> Eξt [(â− ξtg)
2
]. (39)

The main point of the equivalence is the equivalent stability condition on the right-hand side is independent of p. We
observe from (36), if p = q is a valid solution, so is p = 1

q . Applying the inequality of arithematic and geometric mean

(AM-GM Inequality) to p and 1
p , from Eq. (36) we obtain,(

1− 1

δ

)2

= 1− 2

δ
+

1

δ2
≥ 1−

(
p+

1

p

)
1

δ
+

1

δ2
> α2

0. (40)

We know, if p = q > 1 is a solution of (48), then p = 1
q and p = 1 are also solutions, since we obtain from (40),(

1− 1

δ

)2

>

(
p− 1

δ

)(
1

p
− 1

δ

)
> Eξt [(â− ξtg)

2
]. (41)

Hence, we have for some r > 0,(
1− 1

δ

)2

= Eξt [(â− ξtg)
2
] + r > Eξt [(â− ξtg)

2
] +

r

2
. (42)

Now, consider some ε > 0, such that

r

2
=

(
ε2

1 + ε

)
1

δ
=

(
1 + ε+

1

1 + ε
− 2

)
1

δ
. (43)
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From (43), we obtain,(
1 + ε− 1

δ

)(
1

1 + ε
− 1

δ

)
= 1 +

1

δ2
− 2

δ
−
(

1 + ε+
1

1 + ε
− 2

)
1

δ
=

(
1− 1

δ

)2

− r

2
. (44)

Using (42), and (44), and setting p = 1 + ε > 1, we obtain(
p− 1

δ

)(
1

p
− 1

δ

)
=

(
1− 1

δ

)2

− r

2
> Eξt

[
(â− ξtg)

2
]
. (45)

Hence, (40) is a necessary and sufficient condition for (22), implying equivalence (39).
One observes the sufficient condition, as provided in Theorem 4 (i.e., Eq. (22)), is a Riccati equation in one

dimension. For the scalar i.i.d. random variable, ζ, writing E[ζ] = µ := λsup, E[(ζ − µ)2] = σ2 := 2γ̄τλsup, we can
write Eq. (22) as

p > Eζ

[
(a0 − ζg)2p+ (a0 − ζg)2 p2

δ − p
+

1

δ

]
. (46)

In fact, the above condition is a sufficient condition for stability of the following scalar nonlinear system.

xt+1 = (a0 − ζg)xt + φ0 (xt) = (a0 − µg)xt + φ0 (xt)− ξtgxt,
1

δ
> ‖φ0(x)‖∞, (47)

where ‖φ0(·)‖∞ is the H∞ of φ0 ([6]) and ξt = ζ − µ is a zero mean random variable with variance σ2. The CoD for

ζc is γc =
σ2
c

µc
= 2γ̄τ . Equation (46) can be rewritten as(

p− 1

δ

)(
1

p
− 1

δ

)
> Eζc

[
(a0 − ζcg)

2
]

= (a0 − µcg)2 + σ2
cg

2. (48)

We would like to relate the above stability condition to results from robust stability theory. The central premise of
this theory is, if the product of the two gains consisting of a system in the forward loop and the feedback loop is less
than unity, then the feedback interconnection is stable. The product of the two gains is referred to as loop gain. In
Fig. 1(a), we represent the dynamics of a scalar system (47) as a feedback interconnection of a mean linear system
with two feedback loops consisting of nonlinearity and stochastic uncertainty. In the following, we analyze each of
these feedback loops separately (as shown in Figs. 1(b) and 1(c)) to derive the stability condition in terms of loop
gain. Then, we combine the two separate stability conditions to show the main result of this paper can alternatively
be interpreted in terms of loop gains, thereby leading to the proposed definition of a synchronization margin.
Robust Stability to Norm-bounded Nonlinearity: In Fig. 1(b), we have a scalar linear system in the forward
loop and a norm bounded nonlinearity in the feedback loop. The scalar system is given by

G : xt+1 = âxt := (a0 − µg)xt, (49)

where a0 = a− 1
δ is the dynamics of the linear system with mean uncertainty in feedback and G represents the system

with the transfer function, G(z) = 1
z−â . In our context, the feedback loop with gain, g, comes from the nominal

network, but is not shown in the figure for simplicity of explanation. Furthermore, the linear dynamics is assumed
stable. Results from robust stability and Small Gain Theorem [5, 6] can be used to study the stability of the closed
loop. If ‖G‖∞ represents the H∞ norm of the system and ‖φ0‖∞ denotes the H∞ norm of the feedback nonlinearity,
the closed loop is stable if

1 > ‖G‖∞‖φ0‖∞ =

(
1

1− |â|

)
1

δ
, where ‖G‖∞ =

1

1− |â|
, ‖ φ0 ‖∞=

1

δ
. (50)

The condition for robust stability provided in (50) can be reformulated as(
1− 1

δ

)2

> â2. (51)

Robust Stability to Stochastic Uncertainty: Using results developed in [7] under a setting of a linear time
invariant system with vector states, we can analyze the stability of the feedback interconnection of a scalar linear
system with stochastic uncertainty (as shown in Fig. (1)c). The condition for mean square stability of the closed loop
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FIG. 1: (a) System with H∞-norm bounded nonlinearity and stochastic uncertainty in feedback, (b) system with
H∞-norm bounded nonlinearity in feedback, and (c) system with stochastic uncertainty in feedback.

system, as obtained from the Small Gain Theorem in [7], is

1 > ‖G‖MS‖ξtg‖MS , (52)

where ‖G‖MS and ‖ξtg‖MS denote the mean square norm of the system and the stochastic uncertainty, respectively.
It is shown in [7], that ‖G‖MS = ‖G‖22 for a scalar system, where ‖G‖2 denotes the H2-norm of the transfer function
G(z). The H2-norm of the scalar system G(z) with an impulse response h(k) = âk is given by

‖G‖2 =

( ∞∑
k=0

h(k)2

) 1
2

=

( ∞∑
k=0

(
âk
)2) 1

2

. (53)

Thus, the mean square norm of the the linear system is given by

‖G‖2MS =

∞∑
k=0

(
â2
)k

=
1

1− â2
. (54)

The mean square norm of the stochastic uncertainty with zero mean is simply given by its variance, i.e., ‖ξtg‖2MS =
σ2g2. The stability condition (52) for mean square stability of the feedback loop for the system in Fig. (1)c can now
be formulated as

1 >

(
1

1− â2

)
σ2g2 ⇐⇒ 1 > â2 + σ2g2 = Eξt

[
(â− ξtg)2

]
. (55)

Robust Stability to Norm-bounded Nonlinearity and Stochastic Uncertainty: Stability conditions from
the two individual feedback loops as discussed in the previous two sections can be combined to obtained the stability
condition in terms of loop gain for the entire system as shown in Fig. 1(a). In particular, the condition for the mean
square synchronization of the network, where both the norm-bounded nonlinearity and the stochastic uncertainty are
present, can be written as (

1− 1

δ

)2

> â2 + σ2g2. (56)
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The stability condition in Eq. (56) is the correct method for combining the stability condition for the two individual
feedback loops as expressed in Eqs. (51) and (55) for the following reasons. Using Eξt [(â − ξtg)2] = â2 + σ2g2 and
the equivalent relationship (39), we notice (56) is exactly the mean square synchronization condition as derived in
the main results of the paper. Furthermore, when σ = 0 (i.e., no stochastic uncertainty), condition (56) reduces to
condition (51). Similarly, when δ =∞ (i.e., zero nonlinearity), then condition (56) reduces to (55). Hence, Eq. (56)
can be viewed as the proper generalization of the stability conditions from the two individual loops to the entire
system with these two loops operating in tandem.
Discussion on Synchronization Margin: Mean square synchronization condition as expressed in Eq. (56) can be
used to derive the expression for mean square synchronization margin. In particular, we note condition (56), after
algebraic manipulation, can equivalently be written as(

1− 1

δ

)2

> â2 + σ2g2 ⇐⇒ 1 >

(
1(

1− 1
δ

)2 − â2

)
σ2g2. (57)

The equivalent condition (57) has a nice system theoretic-based interpretation in terms of loop gain. In particular,

the quantity,

(
1

(1− 1
δ )

2−â2

)
, can be thought of as the gain of the mean linear system with nonlinearity in the feedback

loop and g2σ2 as the gain of the stochastic uncertainty. The system will have a larger margin of stability, if the

product of these two quantities is further from one. In particular, the smaller the quantity

(
1

(1− 1
δ )

2−â2

)
, the greater

the variance, σ2g2, that can be tolerated to maintain stability, and, hence, more robust the system is to stochastic
uncertainty and vice versa. This motivates us to propose the following definition of synchronization margin as a
quantity, which measures how far the loop gain is from one.

ρSM = 1−

(
1(

1− 1
δ

)2 − â2

)
σ2g2. (58)

This is precisely the definition of synchronization margin as proposed in Definition 5.

Interplay of Internal Dynamics, Network Topology and Uncertainty Characteristics

We now study the interplay of the internal dynamics (a), nonlinearity bound (δ), network topology (λ), and the
uncertainty characteristics (γ̄) through simulations, using a set of parameter values. To nullify the bias of uncertain
link locations, we choose to work with a large number of uncertain links to obtain τ ≈ 1. In Fig. 2, we provide
different orientations of the 3-dimensional plots used to discuss the interplay between various system, network, and
uncertainty parameters over a network with 1000 nodes. In Figs. 2(a) and 2(b), we plot the boundary for the region
with a positive ρSM in the a− λ− γ̄ space, for g = 0.01, and δ = 2. In Figs. 2(c) and 2(d), we plot the boundary for
the region with a positive ρSM in the a− λ− γ̄ space, for g = 0.01, and a = 1.125.

Location of Uncertainty and Network Topology

In the main document, we briefly discussed the impact of the parameter, τ , on the synchronization margin, ρSM .

There exists an inverse relation between τ and ρSM , given by ρSM = 1 − τ
(

2λsupγ̄g
2

(1− 1
δ )

2−(a− 1
δ−λsupg)

2

)
, thus, making

higher τ detrimental for robustness (low value of ρSM ). In this section, we will study the interplay between network
topology and the location of uncertainty within the network. In particular, we wish to analyze the average robustness
of networks to any single interconnection being uncertain. The idea is to observe if certain connectivity patterns make
a network more robust to uncertainty at a single interconnection, averaged over all possible interconnections being
individually uncertain. These ideas are aimed towards understanding the average impact of localized cyber-attacks
on networks. To put things in perspective, a simple spatially invariant network will have the same τ value for any
particular link being uncertain as the network structure is identical when any of the links are removed. However, if
some of the links were to be changed to form different interconnections while keeping the number of edges the same,
it might be possible to increase the robustness of the network. To ensure that we isolate the impact of location in this
study, we assume unit link weights for all network links. For this analysis, we choose our networks to have emerged
from a Small World phenomenon, a class of networks that emerge naturally in physical and social scenarios.
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FIG. 2: (a)&(b) a− λ− γ̄ parameter space indicating ρSM for g = 0.01, and δ = 2, (c)&(d) δ − λ− γ̄ parameter
space indicating ρSM for a = 1.125 and g = 0.01.

FIG. 3: Small World network connectivity graph with increasing value of rewiring probability p.

Small World networks, classified as random networks, [13] were first introduced in [8], and constructed from nearest
neighbor networks with random rewiring of links between nodes with a chosen probability. The fundamental idea of
the Small World phenomenon suggested that as networks emerge in a natural setting, even though most nodes connect
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with neighbouring nodes, there is a chance of long distance interaction between nodes. The propensity of such long
distance interactions is measured by the rewiring probability e. When the rewiring probability, e = 0, the network
is a nearest neighbor network. As e increases, the network loses its nearest neighbor property and has an increasing
number of long distance interconnections. This can be visualized through the schematic in Fig. 3, which shows the
change in the network connectivity as the rewiring probability increases from e = 0 to e = 1 [8]. For the purpose of
this study, we wish to understand if a higher proclivity for long distance interconnections is beneficial for emerging
networks, especially when after a network has emerged, any particular interconnection could be subject to uncertainty
in the form of attacks or fluctuations in the link weight. We would like to clarify that the rewiring probability of
a Small World network has no relation to the interconnection uncertainty, and the link uncertainty is only studied
for a fixed network, that has emerged through the Small World phenomenon for a given rewiring probability e. The
procedure for this study is outlined in the following paragraph.

FIG. 4: Small World network average τ̄avg as a function of rewiring probability p. Figure legend is provided after
the references. The blue line with a solid dot indicates the value of average τ , and the red line with the circle

indicates the value of average ρSM , at the particular switching probability p

We initially consider a network of 50 nodes with 8 nearest neighbors per node. Then, we increase the rewiring
probability from p = 0 to p = 1 in steps of 0.1 to obtain various random networks. For each such network, we
cycle through all the individual links making them uncertain. Then, we compute the value of τ corresponding to the
particular uncertain link with a unit mean value for the interconnection weight. These values of τ are used to find the
average value of τavg for the given network. Since these networks are random in nature and the interconnections are
formed by probabilistically rewiring links from a nearest neighbor network, we obtain the τavg values for 50 samples
of random networks for a chosen probability, p, which are then used to estimate the mean value of τavg given by τ̄avg.
Then we plot the τ̄avg values as a function of the rewiring probability in Fig. 4. A curve connecting the data points
(blue line in Fig. 4) is used to indicate the trend.

We plot the trend of the average synchronization margin, ρSM , in Fig. 4 (black markers with a red curve connecting
them that indicates the trend). It can be observed, as the value of average τ decreases, the synchronization margin
increases, indicating increased randomness (high rewiring probability) in network interconnections makes the network
more robust to link uncertainty. It should be noted, there are small variations in the trend shown by ρSM , which we
attribute to the computation of the average value for τ , λ2, and λN for 50 samples of Small World networks. Overall,
this trend suggests as the rewiring probability in increased, the network robustness increases. Thus, we conclude
nearest neighbour and Small World networks are less robust to the injection of uncertainty at a random link location
in the network, compared to random network.
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Optimal Gain Result

In this subsection we provide the lemma and proof for the results, which provides a method to design the optimal
coupling gain for synchronization.

Lemma 6 For the network system in Eq. (6) with SM given by Eq. (38), the optimal gain, g∗, to achieve maximum
SM is

g∗ =
2(a− 1

δ )

max{λN , λ2 + 2γ̄τ}+ λ2 + 2γ̄τ
. (59)

Proof. We observe from (40) to maximize the synchronization margin with respect to the coupling gain, g, we
must minimize α2

0 with respect to g, and maximize α2
0 with respect to λ. This is a regular saddle-point optimization

problem [9]. Hence, for a given λ,

∂α2
0(λ, g)

∂g
= −2a0λ+ 2

(
λ2 + 2γ̄τλ

)
g = 0. (60)

This provides us with optimal gain, and the corresponding α2
0,

g∗(λ) =
a0

λ+ 2γ̄τ
, and, α2

0(λ, g∗(λ)) =
2γ̄τa2

0

λ+ 2γ̄τ
. (61)

The only important eigenvalues for the graph Laplacian that provide limitations on synchronization (small magnitude
of ρSM ) are λ2 and λN . Hence, we obtain,

g∗(λ2) =
a0

λ2 + 2γ̄τ
, and, g∗(λN ) =

a0

λN + 2γ̄τ
. (62)

Since λN ≥ λ2, we have

g∗(λ2) ≥ g∗(λN ) and α2
0(λ2, g

∗(λ2)) ≥ α2
0(λN , g

∗(λN )). (63)

There also exists a value of gain, ge, which provides the exact same synchronization margin for both λ2 and λN . This
is obtained by equating,

α2
0(λ2, ge) = α2

0(λN , ge), (64)

which provides

λ2
2g

2
e + 2λ2γ̄τg

2
e − 2a0λ2ge = λ2

Ng
2
e + 2λN γ̄τg

2
e − 2a0λNge. (65)

For λN 6= λ2 and λ̄ = λ2+λN
2 , this gives

ge =
a0

λ̄+ γ̄τ
. (66)

Furthermore, the α2
0 value for ge, is given by

α2
0(λ2, ge) = α2

0(λN , ge) = a2
0 −

4λ2λNa
2
0

(λN + λ2 + 2γ̄τ)
2 . (67)

Since λN ≥ λ2, we have ge ≥ g∗(λN ). Furthermore,

α2
0(λN , ge) ≥ α2

0(λN , g
∗(λN )) and α2

0(λ2, ge) ≥ α2
0(λ2, g

∗(λ2)). (68)

We also conclude, g∗(λ2) ≥ ge, iff λN ≥ λ2 + 2γ̄τ and ge ≥ g∗(λ2), iff λ2 + 2γ̄τ ≥ λN . We observe, λN ≥ λ2 + 2γ̄τ , iff

α2
0(λN , g

∗(λ2)) ≥ α2
0(λN , ge) ≥ α2

0(λ2, g
∗(λ2)). (69)
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Hence, ge, being the saddle-point solution, is the optimal gain providing the largest possible α2
0(λ, g) and the smallest

ρSM . Similarly, λ2 + 2γ̄τ ≥ λN , iff

α2
0(λ2, ge) ≥ α2

0(λ2, g
∗(λ2)) ≥ α2

0(λN , g
∗(λ2)). (70)

This gives g∗(λ2) as the optimal gain. Furthermore, at the optimal gain, we always have λsup = λ2. Defining,
χ := max{λN , λ2 + 2γ̄τ}, we can write the optimal gain,

g∗ =
2a0

χ+ λ2 + 2γ̄τ
. (71)

Hence, for λsup = λ2, we obtain

ρSM (g∗) = 1− 2γ̄τλ2 (g∗)
2(

1− 1
δ

)2 − (a0 − λ2g∗)
2
. (72)

We will now provide a lemma which will help readers understand the discussion in this paper on the significance of
the Laplacian eigenvalues. For G(V, E) with node set V and edge set, E , let EV be all possible connections between
nodes in V . Then, for Ẽ = EV \ E , the graph, G̃ = (V, Ẽ), is the compliment of G. Let 0 = λ1 < λ2 ≤ · · · ≤ λN be the
eigenvalues for G and 0 = λ̃1 < λ̃2 ≤ · · · ≤ λ̃N be the eigenvalues for G̃. We state below, the lemma connecting the
eigenvalues of graph, G, and its complement, G̃ [10].

Lemma 7 Let G ≡ (V, E) be a graph on |V | = N nodes. Suppose G̃ ≡ (V, Ẽ) is the complement of G, such that
G̃ = KN\G, where KN is the complete graph on N vertices. Let LG and LG̃ be the Laplacian matrices of G and G̃

with eigenvalues, 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and 0 = λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N , respectively. Then, we must have

λ̃1 = λ1 = 0, λ̃i = N − λN−i+2, ∀ i ∈ {2, . . . , N}. (73)

Simulation Results

In this subsection, we verify the sufficient condition obtained for mean square synchronization through simulation
results. We consider the following 1D system,

xt+1 = axt − φ(xt) + vt, (74)

where a = 1.125, δ = 8, and vt is additive white Gaussian noise with zero mean and variance ω2. Here, φ(x) is given
by

φ(xt) = sgn(xt)
8

(
s1 (|xt| − ε) +

(
s2

2(|xt| − ε)2 + s3

) 1
2

)
, (75)

where s1 = 1 + m2, s2 = 1 − m2, s3 = 4m2ε
2, m2 = 1

1+10ε0.1 , and ε = 0.3. The internal dynamics of the system,
as described by Eq. (74), consists of a double-well potential, with an unstable equilibrium point at the origin

and two stable equilibrium points at x∗ = ±ε
(
a−1
a−2 + m2(a−1)

m2(a−1)−1

)
= ±0.5237. So, with no network coupling, i.e.,

g = 0, the internal dynamics of the agents will converge to the positive equilibrium point, x∗ > 0, for positive
initial conditions. Similarly, if the initial condition is negative, the systems converge to the negative equilibrium
point, x∗ < 0. The double-well potential system is a prototypical example for modeling synchronization phenomena
occurring in the natural sciences and engineering systems. For example, collective motion in molecular dynam-
ics [11] and synchronization of generators in the power grid [12] can essentially be modeled using double-well potential.

Effect of coupling gain: We couple this system over a network of 100 nodes, generated as a random network with
the Small World property. We choose 60% of the links to be uncertain, making τ ≈ 1. The coupling gain for this
system is g = 0.005. The nominal Laplacian for the network is a standard Laplacian with unit weight. Thus, for all
links, eij , connecting nodes i and j, µij = 1. This network has λN = 52.55 and λ2 = 26.23. We now choose 50% of
the links in the network to have uncertain weights. The uncertainty in the network link weights is chosen as a uniform
variable with zero mean and variance, σ2 = 2, such that both these eigenvalues satisfy the required condition from the

main result. The CoD of the link uncertainty is γ̄ = σ2

µ = 2. In Fig. 5(a), we plot the results for synchronization of
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these 100 systems with simulated additive white Gaussian noise with zero mean and variance, ω2 = 0.1, which show
the systems synchronize in an interval around the equilibrium point.

For systems over the network with identical parameters to those in the previous case and identical link noise
variance, if the coupling gain is decreased to g = 0.001, which does not satisfy the requirement for the main result,
we observe the system is unable to synchronize (Fig. 5(b)).

FIG. 5: (a) Time evolution of systems over a 100-node Small World network, γ̄ = 2, g = 0.01, with ρSM > 0, (b)
time evolution of systems over a 100-node Small World network, γ̄ = 2, g = 0.001, with ρSM = 0.

FIG. 6: (a) Time evolution of systems over a 100-node nearest neighbor network with 6 neighbors per agent,
ρSM = 0, (b) time evolution of systems over a 100-node nearest neighbor network with 20 neighbors per agent,
ρSM > 0, (c) time evolution of systems over a 100-node nearest neighbor network with 32 neighbors per agent,

ρSM = 0.

Effect of number of neighbors: Next, we study the effect on the group’s synchronization ability, due to a change in
the number of neighbors for an agent. For this we choose a nearest neighbor network with 100 nodes. The simulation
parameters are chosen as a = 1.05, δ = 16, g = 0.05, γ = 1

12 , and τ ≈ 1. The variance for the uncertainty in the links
is chosen small, to clearly observe the effects due to a change in neighbors. As discussed previously, increasing the
link uncertainty adds to some numerical inaccuracies in the system causing an additive noise-like effect. Furthermore,
the additive noise is also assumed absent to facilitate a clear observation of synchronization.

We first choose a network with 6 neighbors per agent. For this network we observe the system is unable to
synchronize and all the agents break into multiple clusters with each cluster having a small number of agents, Fig.
6(a). The agents do not obtain sufficient state information to bind them to the synchronization manifold, due to
the small number of neighbors. Now, we increase the number of neighbors to 20 for each agent. As the number of
neighbors increases, the agents synchronize to the synchronization manifold extremely well, with very little noise, Fig.
6(b). Furthermore, the rate of synchronization is very high as observed from the simulations, where the agents seem to
synchronize within the first 100 seconds and then collectively move to the synchronization manifold. Synchronization



14

of the agents is observed for a number of neighbors starting at 16 until the number of neighbors reaches 28. As
the number of neighbors increases, we observe significant oscillations before the agents synchronize. Finally, we
increase the number of neighbors to 32 for each agent. This increase in the number of neighbors seems to benefit the
synchronization initially, since all agents quickly coalesce together. However, as they approach the synchronization
manifold, the high number of neighbors causes the systems to fluctuate significantly about the manifold, leading to
an oscillating band of desynchronized agent states, Fig. 6(c). This is the beginning of a desynchronized state for the
agents. More neighbors for an agent would destabilize the individual system dynamics.
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